1. 力学系のカテゴリー

(1.1) 力学系の基礎概念

- (1.1.a) 記号
 - T := { n | n は非負整数 }
 - $(X \rightarrow Y) = \{ f \mid f : X \rightarrow Y \} (X, Y: 集合、 f: 写像)$
- (1.1.b) $D=(\mathcal{S}, au)$ が力学系 \iff $au:\mathcal{S}\to\mathcal{S}$ は写像(\mathcal{S} :状態空間、au:状態遷移写像)。 $|D|:=\mathcal{S}$ と書く。
- (1.1.c) $\mathbf{x} \in (T \rightarrow \mathcal{S})$ が D の軌道 \iff $\tau(\mathbf{x}(t)) = \mathbf{x}(t+1) \forall t \in T.$ \mathbf{x} を $(\mathbf{x}(0), \mathbf{x}(1), \mathbf{x}(2), \cdots)$ とも書く。
- (1.1.d) $\operatorname{Orbit}(D) := \{ \mathbf{x} \mid \mathbf{x} \text{ は } D \text{ の軌道 } \}$ $\omega(x) := (x, \tau(x), \tau^2(x), \cdots, \tau^n(x), \cdots) \in \operatorname{Orbit}(D) \ (x \in \mathcal{S})$
- (1.1.e) 力学系の有向グラフ: $\Gamma(D):=(\mathcal{S},E:=\{\;(x,\tau(x)\mid x\in\mathcal{S}\;\})$

(1.2) 力学系のカテゴリー

- (1.2.a) 力学系のカテゴリー: \mathcal{D} yn
 - 対象:力学系
 - 射:力学系の準同型 $\varphi: D_1 \to D_2 \iff |\varphi|: \mathcal{S}_1 \to \mathcal{S}_2 \quad \text{s.t. } \tau_2 \circ |\varphi| = |\varphi| \circ \tau_1.$
 - \mathcal{D} **yn** $(D_1, D_2) := \{ \varphi : D_1 \to D_2 : \mathbf{M} \}$
 - 注意: $\mathcal{N}=(T, \bullet+1)$ のとき、 $\mathcal{D}\mathbf{yn}(\mathcal{N},D)=\mathrm{Orbit}(D),$ 従って、 $\varphi:D_1\to D_2$ は $\mathcal{D}\mathbf{yn}(\mathcal{N},D_1)\to \mathcal{D}\mathbf{yn}(\mathcal{N},D_2),$ すなわち $\varphi_*:\mathrm{Orbit}(D_1)\to\mathrm{Orbit}(D_2):$ を引き起こす。
- (1.2.b) functor $F: Set \rightarrow Set$ は functor $F: \mathcal{D}yn \rightarrow \mathcal{D}yn$ を引き起こす。例:
 - i. **pow** (D): $\{x, y, \dots\} \mapsto \{\tau x, \tau y, \dots\}$.
 - ii. Map(I, D) $(\tau(\varphi)(i) := \tau(\varphi(i)))$
 - iii. Map(D, I) $(\tau(\varphi)(x) := \varphi(\tau(x)))$

練習問題 $\mathbf{pow}\ D, \operatorname{Map}(D, \{\ 0,1\ \})$ とを比較せよ。

(1.3) \mathcal{D} yn は CCC である

- (1.3.a) 初対象: (\emptyset, \emptyset) ,
- (1.3.b) 終対象: 1 := ({ * }, id), \mathcal{D} **yn**(1, D) = { D の固定点 }
- (1.3.c) 積: $D_1 \times D_2 := (S_1 \times S_2, \tau_1 \times \tau_2)$ $\mathcal{N} \times D$ は D Φ suspension
- (1.3.d) 和: $D_1 + D_2 := (S_1 \coprod S_2, \tau_1 \coprod \tau_2),$ D が、initial ではない2つの力学系の和と同型であるとき、可約 (reducible) であるという。可約でない力学系を既約 (irreducible) であるという。
- (1.3.e) 射対象: $[D_1,D_2]:=(\mathcal{D}\mathbf{yn}(\mathcal{N}\times D_1,D_2),\tilde{ au})$ $\tilde{ au}(arphi)(m,x)=arphi(m+1,x)$ $[D_1,D_2]$ の固定点と D_1 から D_2 への射とが 1 対 1 に対応する。
- (1.3.f) 随伴 (adjunction) ullet \times D \dashv [D, ullet] $\psi: D_1 \times D_2 \to D_3$ に対して、 $\tilde{\psi}: D_1 \to [D_2, D_3]$ を $\tilde{\psi}(x_1)(m, x_2) := \psi(\tau_1^m x_1, x_2)$ と定めると、同型: $\mathcal{D}\mathbf{yn}(D_1 \times D_2, D_3) \simeq \mathcal{D}\mathbf{yn}(D_1, [D_2, D_3])$ を得る。

(1.4) \mathcal{D} **yn** "topos "cos

(1.4.a) 分類対象 Ω

- i. $\Omega = (\{ n \in \mathbf{Z} \mid n \leq 0 \} \cup \{ -\infty \}, \tau_{\Omega}) \ (\tau_{\Omega} : 0 \mapsto 0, \quad n \mapsto n+1, \quad -\infty \mapsto -\infty)$
- ii. $\top : \mathbf{1} \rightarrow \Omega \quad (\top(*) := 0).$
- iii. monic $\varphi: D_1 \to D$ (i.e. $\varphi(\mathcal{S}_1) \subset \mathcal{S}$ は不変部分集合) の特性射: $\chi_{\varphi}: D \to \Omega, \, \chi_{\varphi}(x) := -\min \big\{ \, t \in T \mid \tau^t x \in \varphi(\mathcal{S}_1) \, \big\} \, (\min \emptyset := \infty)$
- 注意 Ω の状態集合は無限集合であることから、有限力学系のカテゴリーはトポスをなさないことがわかる。実は CCC でもないことがわかる (練習問題)。
 - iv. 練習問題 Ω の部分対象をすべて求めよ。すなわち、 \mathcal{D} $\mathbf{yn}(\Omega,\Omega)$ をすべて求めよ。

(1.4.b) 分類対象の構造

- $i. |\Omega|$ 上の順序 $\preceq : \mathbf{Z}$ 上では普通の大小関係, $-\infty$ は最小元とする。
- ii. \mathcal{D} **yn**(1, Ω) = { \top , \bot }, $\hbar \hbar \cup$, \bot (*) = $-\infty$.
- iii. mono $< \top, \top >: \mathbf{1} \rightarrow \Omega \times \Omega$ の特性写像 $\Omega \times \Omega \stackrel{\wedge}{\rightarrow} \Omega$ $(\alpha, \beta) \mapsto \min(\alpha, \beta)$
- iv. mono $\leq_1 \to \Omega \times \Omega$ & $\wedge, pr_1 : \Omega \times \Omega \to \Omega$ of equalizer ≥ 0 equalizer ≥ 0

$$\leq_1 := \{ \alpha, \beta \mid \alpha \leq \beta \}$$

 $v. <_1$ の特性写像 $\rightarrow : \Omega \times \Omega \rightarrow \Omega$:

$$\alpha \rightarrow \beta = \begin{cases} 0 & \text{if } \alpha \leq \beta \\ \beta & \text{if } \alpha \succ \beta \end{cases}$$

vi. $\neg: \Omega \rightarrow \Omega: \neg \alpha := \alpha \rightarrow -\infty$ fths.

$$\neg \alpha = \begin{cases} -\infty & \text{if } \alpha \neq -\infty \\ 0 & \text{if } \alpha = -\infty \end{cases}$$

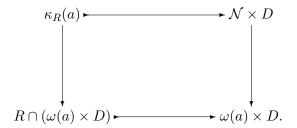
これより

$$\neg \neg \alpha = \begin{cases} 0 & \text{if } \alpha \neq -\infty \\ -\infty & \text{if } \alpha = -\infty. \end{cases}$$

(1.4.c) べき対象: $PD = (Sub(\mathcal{N} \times D), \tilde{\tau})$ ただし、

$$\tilde{\tau}E := \{ (n,d) \mid (n+1,d) \in E \}.$$

 $\operatorname{Sub}(A \times D) \stackrel{\sim}{\to} \mathcal{D}\mathbf{yn}(A, PD)$ は、次のように与えられる。各 $R \subset A \times D$ と $a \in A$ に対して、 $\kappa_R(a) \in \operatorname{Sub}(\mathcal{N} \times D)$ を、次の図が pull-back となるように定める。



すると、a o b ならば $\kappa_R(a) o \kappa_R(b)$ がしめせるので、 $\kappa_R: A o PD$ が射であることがわかる。

(1.5) 力学系の命題論理

	古典論理	力学系の論理
真理値対象	$\{0,-\infty\}$	$\Omega = \{ x \in \mathbf{Z} \mid x \le 0 \} \cup \{ -\infty \}$
真	0	
偽	$-\infty$	
命題	$\varphi: X \to \{0, -\infty\}$	$\varphi:D{ ightarrow}\Omega$
	部分集合 $ \varphi := \varphi^{-1}(0)$	部分力学系 $ arphi :=arphi^{-1}(0)$
解釈	$x \models \varphi \stackrel{def}{\Longleftrightarrow} \varphi(x) = 0$	
否定	$ \neg \varphi = \varphi ^c$	$ \neg \varphi = \{ \ x \mid \omega(x) \cap \varphi = \emptyset \ \}$
	$x \models \neg \varphi \iff x \not\models \varphi$	$x \models \neg \varphi \iff \forall n\tau^n(x) \not\models \varphi$
2 重否定	$ \neg\neg\varphi = \varphi $	$ \neg\neg\varphi =\{\ x\mid\omega(x)\cap\varphi\neq\emptyset\ \}$
		($ arphi $ $\mathcal O$ basin)
		$x \models \neg \neg \varphi \iff \exists n\tau^n x \models \varphi$
排中律	$X = \varphi \cup \neg \varphi $	$D \supseteq \varphi \cup \neg \varphi $
		しかし $D = \neg \neg \varphi \cup \neg \varphi $
		すなわち $D = Basin(arphi) \coprod Basin(arphi)^c$
論理積	$\min\{lpha,eta\}$	
論理和	$\max\{lpha,eta\}$	
含意	$ \varphi \Rightarrow \psi = \varphi ^c \cup \psi $	$ \varphi \Rightarrow \psi = \{ \ x \mid \omega(x) \cap \varphi \subset \psi \ \}$
		$x \models \varphi \Rightarrow \psi \Leftrightarrow \forall n \in T \left[\tau^n x \models \varphi \rightarrow \tau^n x \models \psi \right]$

(1.6) レポート問題 距離空間と連続変換の成すカテゴリーの構造を調べよ。